1,934 research outputs found

    The path-integral analysis of an associative memory model storing an infinite number of finite limit cycles

    Full text link
    It is shown that an exact solution of the transient dynamics of an associative memory model storing an infinite number of limit cycles with l finite steps by means of the path-integral analysis. Assuming the Maxwell construction ansatz, we have succeeded in deriving the stationary state equations of the order parameters from the macroscopic recursive equations with respect to the finite-step sequence processing model which has retarded self-interactions. We have also derived the stationary state equations by means of the signal-to-noise analysis (SCSNA). The signal-to-noise analysis must assume that crosstalk noise of an input to spins obeys a Gaussian distribution. On the other hand, the path-integral method does not require such a Gaussian approximation of crosstalk noise. We have found that both the signal-to-noise analysis and the path-integral analysis give the completely same result with respect to the stationary state in the case where the dynamics is deterministic, when we assume the Maxwell construction ansatz. We have shown the dependence of storage capacity (alpha_c) on the number of patterns per one limit cycle (l). Storage capacity monotonously increases with the number of steps, and converges to alpha_c=0.269 at l ~= 10. The original properties of the finite-step sequence processing model appear as long as the number of steps of the limit cycle has order l=O(1).Comment: 24 pages, 3 figure

    Generating functional analysis of CDMA detection dynamics

    Get PDF
    We investigate the detection dynamics of the parallel interference canceller (PIC) for code-division multiple-access (CDMA) multiuser detection, applied to a randomly spread, fully syncronous base-band uncoded CDMA channel model with additive white Gaussian noise (AWGN) under perfect power control in the large-system limit. It is known that the predictions of the density evolution (DE) can fairly explain the detection dynamics only in the case where the detection dynamics converge. At transients, though, the predictions of DE systematically deviate from computer simulation results. Furthermore, when the detection dynamics fail to convergence, the deviation of the predictions of DE from the results of numerical experiments becomes large. As an alternative, generating functional analysis (GFA) can take into account the effect of the Onsager reaction term exactly and does not need the Gaussian assumption of the local field. We present GFA to evaluate the detection dynamics of PIC for CDMA multiuser detection. The predictions of GFA exhibits good consistency with the computer simulation result for any condition, even if the dynamics fail to convergence.Comment: 14 pages, 3 figure

    Generating functional analysis of complex formation and dissociation in large protein interaction networks

    Full text link
    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.Comment: 14 pages, to be published in Proc of IW-SMI-2009 in Kyoto (Journal of Phys Conference Series

    Linear Complexity Lossy Compressor for Binary Redundant Memoryless Sources

    Full text link
    A lossy compression algorithm for binary redundant memoryless sources is presented. The proposed scheme is based on sparse graph codes. By introducing a nonlinear function, redundant memoryless sequences can be compressed. We propose a linear complexity compressor based on the extended belief propagation, into which an inertia term is heuristically introduced, and show that it has near-optimal performance for moderate block lengths.Comment: 4 pages, 1 figur
    • …
    corecore